Evaluation of the Performance of Atomic Diffusion Additive Manufacturing Electrodes in Electrical Discharge Machining.
Pablo BordónRubén PazMario D MonzónPublished in: Materials (Basel, Switzerland) (2022)
Atomic Diffusion Additive Manufacturing (ADAM) is an innovative Additive Manufacturing process that allows the manufacture of complex parts in metallic material, such as copper among others, which provides new opportunities in Rapid Tooling. This work presents the development of a copper electrode manufactured with ADAM technology for Electrical Discharge Machining (EDM) and its performance compared to a conventional electrolytic copper. Density, electrical conductivity and energy-dispersive X-ray spectroscopy were performed for an initial analysis of both ADAM and electrolytic electrodes. Previously designed EDM experiments and optimizations using genetic algorithms were carried out to establish a comparative framework for both electrodes. Subsequently, the final EDM tests were carried out to evaluate the electrode wear rate, the roughness of the workpiece and the rate of material removal for both electrodes. The EDM results show that ADAM technology enables the manufacturing of functional EDM electrodes with similar material removal rates and rough workpiece finishes to conventional electrodes, but with greater electrode wear, mainly due to internal porosity, voids and other defects observed with field emission scanning electron microscopy.