The occurrence of tire wear compounds and their transformation products in municipal wastewater and drinking water treatment plants.
Cassandra JohannessenChris D MetcalfePublished in: Environmental monitoring and assessment (2022)
In the present study, 29 chemicals derived from tire wear were monitored by deploying Polar Organic Chemical Integrative Samplers (POCIS) in four WWTPs and two drinking water treatment plants (DWTPs) located in a municipality in southern Ontario, Canada. Target analytes included 1,3-diphenylguanidine (DPG), the oxidation byproduct of N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine called 6PPD-quinone, hexamethoxymethylmelamine (HMMM), and 26 of HMMM's known transformation products (TPs). This study is the first to monitor all these target compounds in DWTPs, as well as to report data for the presence of 6PPD-quinone in WWTPs. HMMM and selected TPs of this compound were detected in POCIS deployed in the WWTPs and in the DWTPs. The maximum estimated time-weighted average (TWA) concentration of HMMM of 83.2 ± 25.2 ng/L was observed in the effluent of one of the WWTPs. The TWA concentrations were not determined for any of the other target analytes, as POCIS sampling rates have not been determined for these chemicals. The total mass of HMMM and its TPs accumulated on POCIS frequently exceeded 4000 ng and the masses were generally lower in WWTP effluents relative to the influents. For other target analytes, the amounts accumulated on POCIS deployed in WWTP effluents frequently exceeded the amounts accumulated on POCIS deployed in the influents. DPG was detected in POCIS deployed in both the WWTPs and the DWTPs, and 6PPD-quinone was detected in POCIS deployed in both the influent and the effluent of WWTPs. We speculate that these tire wear compounds are entering WWTPs through stormwater overflows into the sewers or from commercial sources (e.g., car washes). This study highlights the need for an assessment of both WWTPs and DWTPs as sinks and sources of these tire wear compounds and the efficacy of treatment processes to remove them from both wastewater and drinking water.