Immigration and seasonal bottlenecks: high inbreeding despite high genetic diversity in an oscillating population of Culicoides sonorensis (Diptera: Ceratopogonidae).
Phillip T ShultsXinmi ZhangMegan MoranLee W CohnstaedtAlec C GerryEdward L VargoPierre-Andre EyerPublished in: Journal of medical entomology (2023)
Most population genetic studies concern spatial genetic differentiation, but far fewer aim at analyzing the temporal genetic changes that occur within populations. Vector species, including mosquitoes and biting midges, are often characterized by oscillating adult population densities, which may affect their dispersal, selection, and genetic diversity over time. Here, we used a population of Culicoides sonorensis from a single site in California to investigate short-term (intra-annual) and long-term (inter-annual) temporal variation in genetic diversity over a 3 yr period. This biting midge species is the primary vector of several viruses affecting both wildlife and livestock, thus a better understanding of the population dynamics of this species can help inform epidemiological studies. We found no significant genetic differentiation between months or years, and no correlation between adult populations and the inbreeding coefficient (FIS). However, we show that repeated periods of low adult abundance during cooler winter months resulted in recurring bottleneck events. Interestingly, we also found a high number of private and rare alleles, which suggests both a large, stable population, as well as a constant influx of migrants from nearby populations. Overall, we showed that the high number of migrants maintains a high level of genetic diversity by introducing new alleles, while this increased diversity is counterbalanced by recurrent bottleneck events potentially purging unfit alleles each year. These results highlight the temporal influences on population structure and genetic diversity in C. sonorensis and provide insight into factors effecting genetic variation that may occur in other vector species with fluctuating populations.