Login / Signup

Controllable Ferromagnetism in Super-tetragonal PbTiO3 through Strain Engineering.

Linxing ZhangDongxing ZhengLonglong FanJinguo WangMoon KimJiaou WangHuanhua WangXianran XingJianjun TianJun Chen
Published in: Nano letters (2020)
The coupling strain in nanoscale systems can achieve control of the physical properties in functional materials, such as ferromagnets, ferroelectrics, and superconductors. Here, we directly demonstrate the atomic-scale structure of super-tetragonal PbTiO3 nanocomposite epitaxial thin films, including the extraordinary coupling of strain transition and the existence of the oxygen vacancies. Large strain gradients, both longitudinal and transverse (∼3 × 107 m-1), have been observed. The original non-magnetic ferroelectric composites notably evoke ferromagnetic properties, derived from the combination of Ti3+ and oxygen vacancies. The saturation ferromagnetic moment can be controlled by the strain of both the interphase and substrate, optimized to a high value of ∼55 emu/cc in 10-nm thick nanocomposite epitaxial thin films on the LaAlO3 substrate. Strain engineering provides a route to explore multiferroic systems in conventional non-magnetic ferroelectric oxides and to create functional data storage devices from both ferroelectrics and ferromagnetics.
Keyphrases