Login / Signup

Humoral responses to wild type and ancient BA.1 SARS-CoV-2 variant after heterologous priming vaccination with ChAdOx1 nCoV-19 and BNT162b2 booster dose.

Giuseppina SannaAlessandra MarongiuDavide FirinuCristina PirasVanessa PalmasMassimiliano GaldieroLuigi AtzoriPaola CariaMarcello CampagnaAndrea PerraGiulia CostanzoFerdinando CogheRoberto LitteraLuchino ChessaAldo Manzin
Published in: Clinical and experimental medicine (2024)
Several countries have recommended a booster dose of Pfizer BNT162b2 vaccine for subjects under the age of 60, who have already received the first dose of ChAdOx1. This is due to several ChAdOx1 vaccine-associated adverse vascular events and thrombocytopenia. Neutralization assay and quantitative IgG anti-SARS-CoV-2 Spike antibody (anti-S-IgG) were conducted to investigate the long-term responses to vaccine treatment in a cohort of Sardinian participants, who have received heterologous Prime-Boost Vaccination via ChAdOx1 vector vaccine and a booster dose via BNT162b2. The obtained results were compared with those of a cohort of healthcare workers (HCW) who received homologous BNT162b2 (BNT/BNT/BNT) vaccination. One month (T2) and five months after the second and before the third dose (T3), anti-spike antibody or neutralizing titers in the subjects vaccinated with ChAdOx1-S/BNT162b2 were significantly higher than those who experienced the ChAdOx1-S/ChAdOx1-S or BNT162b2/BNT162b2 schedule. These results suggest that a ChAdOx1-S/BNT162b2 regimen provides a more robust antibody response than either of the homologous regimens. However, the anti-spike antibodies or neutralizing titers after the third injection (mRNA vaccine) of ChAdOx1-S as a second dose and BNT162b2 were not statistically different. Homologous and heterologous vaccination provided a strong antibody response. Neutralizing activities were also described against the Omicron BA.1 variant in a sub-group (40) representative of the three vaccination regimens among our cohort.
Keyphrases
  • sars cov
  • dna damage
  • dna repair
  • immune response
  • dengue virus
  • wild type
  • oxidative stress
  • zika virus
  • binding protein
  • drug induced
  • adverse drug
  • bacillus subtilis