Login / Signup

Ubiquity of complex coacervation of DNA and proteins in aqueous solution.

Priyanka KaushikPankaj K PandeyV K AswalHimadri B Bohidar
Published in: Soft matter (2021)
We report complex coacervation between a primarily hydrophobic protein, elastin, and a strong polyanion DNA (2 kbp) in aqueous and salty solutions at room temperature, 25 °C. The associative interaction at fixed elastin and varying DNA concentration, thereby maintaining a mixing ratio of r = [DNA] : [elastin] = 0.0027 to 0.093, was probed. What distinguishes this study from protein-DNA coacervation reported earlier is that the protein used here was mostly a hydrophobic polyampholyte with low linear charge density, and its complementary polyelectrolyte, DNA, concentration was chosen to be extremely small (1-35 ppm). The interaction profile was found to be strongly hierarchical in the mixing ratio, defined by three distinct regions: (i) Region I (r < 0.02) was defined as the onset of primary binding leading to condensation of DNA; (ii) Region II (0.02 < r < 0.08) indicated secondary binding which led to the formation of fully charge neutralized complexes signaling the onset of coacervation; and (iii) Region III (0.08 < r < 0.12) revealed growth of insoluble complexes of large size facilitating liquid-solid phase separation. The degree of complex coacervation was suppressed in the presence of a monovalent salt implying that screened Coulomb interactions governed the binding. Small angle neutron scattering data attributed an amorphous structure to the coacervates. The elastin-DNA system belongs to a rare class of interacting biopolymers where very weak electrostatic interactions may drive coacervation, thereby implying that coacervation between DNA and proteins may be ubiquitous.
Keyphrases
  • circulating tumor
  • cell free
  • single molecule
  • room temperature
  • nucleic acid
  • ionic liquid
  • aqueous solution
  • binding protein
  • high resolution
  • transcription factor
  • amino acid
  • single cell