QSPcc reduces bottlenecks in computational model simulations.
Danilo TomasoniAlessio ParisStefano GiampiccoloFederico RealiGiulia SimoniLuca MarchettiChanchala KaddiSusana Neves-ZaphCorrado PriamiKarim AzerRosario LombardoPublished in: Communications biology (2021)
Mathematical models have grown in size and complexity becoming often computationally intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and qualification, these models may be run thousands of times. Scientific programming languages popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of performance. Here we show a compiler-based approach, designed to be universal at handling engineering and life sciences modeling styles, that automatically translates models into fast C code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arithmetic mean, our results show consistent superior performances.
Keyphrases