Login / Signup

Stopped-Flow Dynamics Study on the Escape Behavior of Polyelectrolyte Macromolecules from Microgels: The Influence of the Path Length and Size.

Xiao-Xu MaoJie-Cheng ZhaShou-Kui HuKe ShangJun Yin
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
We reported the fabrication of several monodispersed poly(2-vinyl pyridine)-poly(N-isopropylacrylamide) (P2VP-PNIPAM) microgels including the P2VP core (non-cross-linked) and PNIPAM (cross-linked) shell by mature emulsion polymerization. The fast escape behavior (diffusion process) of linear P2VP chains through a porous PNIPAM layer was investigated by a pH jump stopped-flow apparatus. The time-dependent dynamic traces (corresponding to the scattered light intensity) decreased at the initial timescale of several seconds and then reached an apparent equilibrium, confirming the efficient escape of P2VP chains from microgels. Compared with the previously reported literature, such an accelerated escape process resulted from the sharply increased internal charge repulsive force caused by the protonation of P2VP moieties under acidic conditions. The obtained characteristic relaxation times by single exponential fitting of these kinetic traces were dependent on the final pH values, equilibrium temperatures, shell thickness (path length), and cross-linking density (mesh size). We believe that this work can provide an efficient way to investigate hindered diffusion, especially the initial rapid diffusion stage. Not only that, the proposed model can also provide theoretical guidance to some practical applications, such as membrane separation and the exocytosis phenomenon of intracellular proteins or macromolecular substances.
Keyphrases