Login / Signup

Photoionization Dynamics and Proton Transfer within the Adenine-Thymine Nucleobase Pair.

Sebastian HartwegMajdi HochlafGustavo A GarcíaLaurent Nahon
Published in: The journal of physical chemistry letters (2023)
Studying the stability of hydrogen-bonded nucleobase pairs, at the heart of the genetic code, is of utmost importance for an in-depth understanding of basic mechanisms of life and biomolecular evolution. We present here a VUV single photon ionization dynamic study of the nucleobase pair adenine-thymine (AT), revealing its ionization and dissociative ionization thresholds via double imaging electron/ion coincidence spectroscopy. The experimental data, consisting of cluster mass-resolved threshold photoelectron spectra and photon energy-dependent ion kinetic energy release distributions, allow the unambiguous distinction of the dissociation of AT into protonated adenine AH + and a dehydrogenated thymine radical T(-H) from dissociative ionization processes of other nucleobase clusters. Comparison to high-level ab initio calculations indicates that our experimental observations can be explained by a single hydrogen-bonded conformer present in our molecular beam and allows the estimation of an upper limit of the barrier of the proton transfer in the ionized AT pair.
Keyphrases