Login / Signup

Metal Oxide Nanoparticles Containing Clotrimazole to Suppress Photodegradation of Poly(Vinyl Chloride) Thin Films.

Noor EmadGamal A El-HitiEmad A YousifBenson M Kariuki
Published in: Polymers (2023)
Pol(vinyl chloride) or PVC has functional properties that enable its use in many industrial applications. It suffers from aging, however, in harsh conditions (e.g., elevated temperature or high humidity levels) if oxygen is present. One way to enhance the photostability of PVC is to blend it with additives. Thus, thin films were made by mixing PVC with clotrimazole, and five metal oxide (titanium, copper, cobalt, chromium, and nickel oxides) additives. The metal oxides and clotrimazole were added at concentrations of 0.1 and 0.5% by weight, respectively. The effect of the metal oxide nanoparticles accompanied by clotrimazole on the photodegradation of PVC was then assessed. The results indicated that the additives have a stabilizing effect and protect PVC against photodegradation significantly. The formation of polymeric fragments of small molecular weight containing carbon-carbon double bonds and carbonyl groups was lower in the blends containing metal oxide nanoparticles and clotrimazole than in unblended PVC. Similarly, the decrease in weight was much less for the films blended with additives. Additionally, surface analysis of the irradiated polymeric films showed significantly lower damage in the materials containing additives. The most effective additive in the stabilization of PVC was nickel oxide nanoparticles. The metal oxides are highly alkaline and act as scavengers for the hydrogen chloride produced during the photodegradation of PVC. They additionally act as peroxide decomposers. In contrast, clotrimazole can absorb harmful radiation and act as an ultraviolet absorber due to its heteroatom and aromatic content. Thus, the use of a combination of metal oxide nanoparticles and clotrimazole led to significant improvement in the resistance of PVC toward photodegradation.
Keyphrases
  • oxide nanoparticles
  • ionic liquid
  • body mass index
  • visible light
  • magnetic resonance imaging
  • weight loss
  • oxidative stress
  • drug release
  • risk assessment
  • computed tomography
  • amino acid
  • reduced graphene oxide