Login / Signup

Standard Thermodynamic Functions of Tripeptides N-Formyl-l-methionyl-l-leucyl-l-phenylalaninol and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine Methyl Ester.

Alexey V MarkinEvgeny MarkhasinSemen S SologubovNatalia N SmirnovaRobert G Griffin
Published in: Journal of chemical and engineering data (2014)
The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal decomposition was observed. The standard thermodynamic functions: molar heat capacity Cp,m, enthalpy H(T) - H(0), entropy S(T), and Gibbs energy G(T) - H(0) of peptides were calculated over the range from T = (0 to 350) K. The low-temperature (T ≤ 50 K) heat capacities dependencies were analyzed using the Debye's and the multifractal theories. The standard entropies of formation of peptides at T = 298.15 K were calculated.
Keyphrases