S3 State Models of Nature's Water Oxidizing Complex: Analysis of Bonding and Magnetic Exchange Pathways, Assessment of Experimental Electron Paramagnetic Resonance Data, and Implications for the Water Oxidation Mechanism.
Thomas A CorryPatrick J O'MalleyPublished in: The journal of physical chemistry. B (2021)
Broken symmetry density functional theory (BS-DFT) calculations on large models of Nature's water oxidizing complex (WOC) are used to investigate the electronic structure and associated magnetic interactions of this key intermediate state. The electronic origins of the ferromagnetic and antiferromagnetic couplings between neighboring Mn ions are investigated and illustrated by using corresponding orbital transformations. Protonation of the O4 and/or O6 atoms leads to large variation in the distribution of spin around the complex with associated changes in its magnetic resonance properties. Models for Sr2+ exchange and methanol addition indicate minor perturbations reflected in slightly altered spin projection coefficients for the Mn1 and Mn2 ions. These are shown to account for the observed changes observed experimentally via electron paramagnetic resonance methods and suggest a reinterpretation of the experimental findings. By comparison with experimental determinations, we show that the spin projections and resulting calculated 55Mn hyperfine couplings support the open cubane form of an oxo (O5)-hydroxo (O6) cluster in all cases with no need to invoke a closed cubane intermediate. The implications of these findings for the water oxidation mechanism are discussed.
Keyphrases
- density functional theory
- room temperature
- molecular dynamics
- magnetic resonance
- transition metal
- hydrogen peroxide
- metal organic framework
- minimally invasive
- quantum dots
- electron transfer
- magnetic resonance imaging
- molecularly imprinted
- big data
- single molecule
- electronic health record
- nitric oxide
- deep learning
- atomic force microscopy
- data analysis