Comparative Exposure Assessment of Potential Health Risks through the Consumption of Vegetables Irrigated by Freshwater/Wastewater: Gujranwala, Pakistan.
Muhammad HaroonAbdulaziz A Al-SaadiMuhammad Adnan IqbalPublished in: Chemical research in toxicology (2021)
The motive of this study is the rapid increase of industrial and domestic wastewater application for the growth of agricultural crops, which is closely associated with human health. In this study, the accumulation of eight heavy metals (Zn, Cu, Fe, Mn, Pb, Cr, Ni, and Cd) in the edible parts of five different species of common vegetables-cauliflower, bitter gourd, radish, pumpkin, and apple gourd-irrigated by two different water irrigation sources (wastewater/freshwater) grown in Pakistan's industrial and agricultural city Gujranwala and human health risks associated with the consumption of vegetables were evaluated. The mean concentration of each metal (Zn, Cu, Fe, Mn, Pb, Cr, Ni, and Cd) in five selected freshwater irrigated vegetables was observed as 48.91, 38.47, 133, 87.5, 4.62, 0.92, 1.46, and 0.36 mg/kg, respectively, while the mean concentration of each corresponding metal in wastewater irrigated vegetables was found to be 59.2, 49.5, 188, 90.9, 6.08, 2.66, 3.98, and 1.76 mg/kg, respectively. The estimated daily intake of metals (EDI), target health quotient (THQ), hazard index (HI), and target cancer risk (TCR) were computed to assess the impact of a raised level of metals in vegetables on human health. The grand THQ (G-THQ) values of individual freshwater irrigated vegetables were lower than the G-THQ values of individual wastewater irrigated vegetables and the G-THQ values of Cu, Cr, Pb, and Cd were found to be greater than the safety limit in wastewater irrigated vegetables. The HI values were found to be 7.94 and 4.01 for the vegetables irrigated with wastewater and freshwater, respectively. The TCR data reveal adverse carcinogenic risks induced by Ni, Cr, and Cd through the consumption of wastewater irrigated vegetables and Ni and Cd from the consumption of freshwater fed vegetables. The principal component analysis (PCA) to predict the sources of metals and Monte Carlo simulation were conducted to reduce the uncertainty in the data. The results indicate that higher significant health risks (carcinogenic and non-carcinogenic) would be posed to the adult population through the consumption of wastewater irrigated vegetables comparatively.
Keyphrases
- human health
- risk assessment
- heavy metals
- health risk assessment
- health risk
- wastewater treatment
- climate change
- anaerobic digestion
- metal organic framework
- public health
- healthcare
- emergency department
- drinking water
- aqueous solution
- sewage sludge
- dna methylation
- computed tomography
- single cell
- genome wide
- magnetic resonance imaging
- body mass index
- electronic health record
- gene expression
- regulatory t cells
- big data
- social media
- endothelial cells
- ionic liquid
- polycyclic aromatic hydrocarbons
- magnetic resonance