Social Selection and Indirect Genetic Effects in Structured populations.
Barbora TrubenováReinmar HagerPublished in: Evolutionary biology (2013)
Social selection and indirect genetic effects (IGEs) are established concepts in both behavioural ecology and evolutionary genetics. While IGEs describe effects of an individual's genotype on phenotypes of social partners (and may thus affect their fitness indirectly), the concept of social selection assumes that a given phenotype in one individual affects the fitness of other individuals directly. Although different frameworks, both have been used to investigate the evolution of social traits, such as cooperative behaviour. Despite their similarities (both concepts consider interactions among individuals), they differ in the type of interaction. It remains unclear whether the two concepts make the same predictions about evolutionary trajectories or not. To address this question, we investigate four possible scenarios of social interactions and compare the effects of IGEs and social selection for trait evolution in a multi-trait multi-member model. We show that the two mechanisms can yield similar evolutionary outcomes and that both can create selection pressure at the group level. However, the effect of IGEs can be stronger due to the possibility of feedback loops. Finally, we demonstrate that IGEs, but not social selection gradients, may lead to differences in the direction of evolutionary response between genotypes and phenotypes.