Login / Signup

Mathematical modelling of cytokines, MMPs and fibronectin fragments in osteoarthritic cartilage.

Michelle BakerBindi S BrookMarkus R Owen
Published in: Journal of mathematical biology (2017)
Osteoarthritis (OA) is a degenerative disease which causes pain and stiffness in joints. OA progresses through excessive degradation of joint cartilage, eventually leading to significant joint degeneration and loss of function. Cytokines, a group of cell signalling proteins, present in raised concentrations in OA joints, can be classified into pro-inflammatory and anti-inflammatory groups. They mediate cartilage degradation through several mechanisms, primarily the up-regulation of matrix metalloproteinases (MMPs), a group of collagen-degrading enzymes. In this paper we show that the interactions of cytokines within cartilage have a crucial role to play in OA progression and treatment. We develop a four-variable ordinary differential equation model for the interactions between pro- and anti-inflammatory cytokines, MMPs and fibronectin fragments (Fn-fs), a by-product of cartilage degradation and up-regulator of cytokines. We show that the model has four classes of dynamic behaviour: homoeostasis, bistable inflammation, tristable inflammation and persistent inflammation. We show that positive and negative feedbacks controlling cytokine production rates can determine either a pre-disposition to OA or initiation of OA. Further, we show that manipulation of cytokine, MMP and Fn-fs levels can be used to treat OA, but we suggest that multiple treatment targets may be essential to halt or slow disease progression.
Keyphrases
  • knee osteoarthritis
  • oxidative stress
  • extracellular matrix
  • anti inflammatory
  • chronic pain
  • cell therapy
  • pain management
  • stem cells
  • body mass index
  • mesenchymal stem cells
  • bone marrow