Login / Signup

Chemodivergence in Pd-catalyzed desymmetrization of allenes: enantioselective [4+3] cycloaddition, desymmetric allenylic substitution and enynylation.

Pengfei LuoLong LiXinfang MaoZheng SunYingcheng WangFangzhi PengZhihui Shao
Published in: Chemical science (2023)
A class of prochiral allenylic di-electrophiles have been introduced for the first time as three-atom synthons in cycloadditions, and a new type of [4+3] cycloaddition involving transition metal-catalyzed enantioselective sequential allenylic substitution has been successfully developed, enabling challenging seven-membered exocyclic axially chiral allenes to be accessed in good yields with good enantioselectivity. Through the addition of a catalytic amount of ortho -aminoanilines or ortho -aminophenols, the racemization of the [4+3] cycloaddition products is effectively suppressed. Mechanistic studies reveal that elusive Pd-catalyzed enantioselective intramolecular allenylic substitution rather than intermolecular allenylic substitution is the enantio-determining step in this cycloaddition. By tuning the ligands, a Pd-catalyzed enantioselective desymmetric allenylic substitution leading to linear axially chiral tri-substituted allenes or a Pd-catalyzed tandem desymmetric allenylic substitution/β-vinylic hydrogen elimination (formal enynylation) leading to multi-functionalized 1,3-enynes is achieved chemodivergently.
Keyphrases
  • room temperature
  • transition metal
  • ionic liquid
  • gene expression
  • escherichia coli
  • molecular docking
  • dna methylation
  • energy transfer
  • case control
  • neural network
  • electron transfer