Login / Signup

Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH 2 Metal-Organic Gels.

Chuan ZhouBo YuanShouxin ZhangGuang YangLin LuHeguo LiCheng-An Tao
Published in: ACS applied materials & interfaces (2022)
Zirconium-based metal-organic frameworks (Zr-MOFs) have been considered as prospective materials for the degradation of nerve chemical warfare agents (CWAs) but show poor catalytic performance toward blister agents. Moreover, the powder issues and the poor adsorption capability also remain as the major challenges for the application of Zr-MOFs in practical CWA detoxification. Herein, a series of defected granular UiO-66-NH 2 metal-organic gels are synthesized via adjusting the amount of added concentrated hydrochloric acid for the decontamination of 2-chloroethyl ethyl sulfide (2-CEES), a sulfur mustard simulant. The half-life of 2-CEES decontaminated by defected granular UiO-66-NH 2 metal-organic gels can be shortened to 7.6 min, which is the highest reported value for MOFs under ambient conditions. The mechanism of decontamination is that the amino group on the linkers in UiO-66-NH 2 MOGs undergoes a substitution reaction with 2-CEES to yield 2-(2-(ethylthio)ethylamino)terephthalic acid, which is less toxic and fixed in the frameworks. The recycling test corroborates that the granular UiO-66-NH 2 xerogels possess good stability and reusability. Static adsorption and desorption tests show that UiO-66-NH 2 xerogels possess a high 2-CEES vapor adsorption capacity of 802 mg/g after exposure for 1 d and only 28 wt % desorption capacity after air exposure for 7 d. The dual function of ultrafast degradation and high adsorption capability provide a firm foundation for using UiO-66-NH 2 xerogels as a future protection media.
Keyphrases
  • metal organic framework
  • room temperature
  • aqueous solution
  • air pollution
  • perovskite solar cells
  • particulate matter
  • ionic liquid
  • water soluble
  • positron emission tomography
  • energy transfer
  • pet ct