Login / Signup

[K 2 PbX][Ga 7 S 12 ] (X = Cl, Br, I): The First Lead-Containing Cationic Moieties with Ultrahigh Second-Harmonic Generation and Band Gaps Exceeding the Criterion of 2.33 eV.

Wen-Fa ChenBin-Wen LiuShao-Min PeiXiao-Ming JiangGuo-Cong Guo
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
In contrast to anionic group theory of nonlinear optical (NLO) materials that second-harmonic generation (SHG) responses mainly originate from anionic groups, structural regulation on the cationic groups of salt-inclusion chalcogenides (SICs) is performed to make them also contribute to the NLO effects. Herein, the stereochemically active lone-electron-pair Pb 2+ cation is first introduced to the cationic groups of NLO SICs, and the resultant [K 2 PbX][Ga 7 S 12 ] (X = Cl, Br, I) are isolated via solid-state method. The features of their three-dimensional structures comprise highly oriented [Ga 7 S 12 ] 3- and [K 2 PbX] 3+ frameworks derived from AgGaS 2 , which display the largest phase-matching SHG intensities (2.5-2.7 × AgGaS 2 @1800 nm) among all SICs. Concurrently, three compounds manifest band gap values of 2.54, 2.49, and 2.41 eV (exceeding the criterion of 2.33 eV), which can avoid two-photon absorption under the fundamental laser of 1064 nm, along with the relatively low anisotropy of thermal expansion coefficients, leading to improved laser-induced damage thresholds (LIDTs) values of 2.3, 3.8, and 4.0 times that of AgGaS 2 . In addition, the density of states and SHG coefficient calculations demonstrate that the Pb 2+ cations narrow the band gaps and benefit SHG responses.
Keyphrases
  • pet ct
  • solid state
  • heavy metals
  • photodynamic therapy
  • high resolution
  • ionic liquid
  • magnetic resonance
  • oxidative stress
  • molecular dynamics
  • monte carlo
  • magnetic resonance imaging
  • risk assessment
  • computed tomography