Login / Signup

3D Bioprinting Strategies for Articular Cartilage Tissue Engineering.

Do Young ParkSeon-Hwa KimSang-Hyug ParkJi Su JangJames J YooSang Jin Lee
Published in: Annals of biomedical engineering (2023)
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.
Keyphrases
  • tissue engineering
  • ejection fraction
  • stem cells
  • knee osteoarthritis
  • oxidative stress
  • middle aged
  • body composition
  • extracellular matrix