Escherichia coli Nissle 1917 Antagonizes Candida albicans Growth and Protects Intestinal Cells from C. albicans -Mediated Damage.
Yasmine RebaiLysett WagnerMayssa GnaienMerle L HammerMario KapitanMaria Joanna NiemiecWael MamiAmor MosbahErij MessadiHelmi MardassiSlavena VylkovaIlse Denise JacobsenSadri ZnaidiPublished in: Microorganisms (2023)
Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans -EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans 's filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections.