Login / Signup

Keeping in step with the young: Chronometric and kinematic data show intact procedural locomotor sequence learning in older adults.

Leif JohannsenErik FriedgenDenise Nadine StephanJoao BatistaDoreen SchulzeThea LaurentiusIring KochLeo Cornelius Bollheimer
Published in: PloS one (2022)
Sequence learning in serial reaction time tasks (SRTT) is an established, lab-based experimental paradigm to study acquisition and transfer of skill based on the detection of predictable stimulus and motor response sequences. Sequence learning has been mainly studied in key presses using visual target stimuli and is demonstrated by better performance in predictable sequences than in random sequences. In this study, we investigated sequence learning in the context of more complex locomotor responses. To this end, we developed a novel goal-directed stepping SRTT with auditory target stimuli in order to subsequently assess the effect of aging on sequence learning in this task, expecting that age-related performance reductions in postural control might disturb the acquisition of the sequence. We used pressure-sensitive floor mats to characterise performance across ten blocks of trials. In Experiment 1, 22 young adults demonstrated successful acquisition of the sequence in terms of the time to step on the target mat and percent error and thus validated our new paradigm. In Experiment 2, in order to contrast performance improvements in the stepping SRTT between 27 young and 22 old adults, motion capture of the feet was combined with the floor mat system to delineate individual movement phases during stepping onto a target mat. The latencies of several postural events as well as other movement parameters of a step were assessed. We observed significant learning effects in the latency of step initiation, the time to step on the target mat, and motion parameters such as stepping amplitude and peak stepping velocity, as well as in percent error. The data showed general age-related slowing but no significant performance differences in procedural locomotor sequence learning between young and old adults. The older adults also had comparable conscious representations of the sequence of stimuli as the young adults. We conclude that sequence learning occurred in this locomotor learning task that is much more complex than typical finger-tapping sequence learning tasks, and that healthy older adults showed similar learning effects compared to young adults, suggesting intact locomotor sequence learning capabilities despite general slowing and normal age-related decline in sensorimotor function.
Keyphrases
  • young adults
  • spinal cord injury
  • physical activity
  • amino acid
  • magnetic resonance imaging
  • computed tomography
  • mass spectrometry
  • middle aged
  • data analysis
  • high speed