Login / Signup

Single channel surface electromyogram deconvolution to explore motor unit discharges.

Luca Mesin
Published in: Medical & biological engineering & computing (2019)
Interference surface electromyogram (EMG) reflects many bioelectric properties of active motor units (MU), which are however difficult to estimate due to the asynchronous summation of their discharges. This paper introduces a deconvolution technique to estimate the cumulative firings of MUs. Tests in simulations show that the power spectral density of the estimated MU firings has a low-frequency peak corresponding to the mean firing rate of MUs in the detection volume of the recording system, weighted by the amplitudes of MU action potentials. The peak increases in amplitude and its centroid shifts to a higher frequency when MU synchronization is simulated (mainly due to the shift of discharges of large MUs). The peak is found even at high force levels, when such a contribution does not emerge from the EMG. This result is also confirmed in preliminary applications to experimental data. Moreover, the simulated cumulative firings of MUs are estimated with a correlation above 90% (considering frequency contributions up to 150 Hz), for all force levels. The method requires a single EMG channel, thus being feasible even in applied studies using simple recording systems. It may open many potential applications, e.g., in the study of the modulation of MU firing rate induced by either fatigue or pathology and in coherency analysis. Graphical Abstract Examples of application of the deconvolution (Deconv) algorithm and comparison with the cumulative firings and the cumulated weighted firings (CWF, i.e., each firing pattern is weighted by the root mean squared amplitude of the corresponding MU action potential). Portions of data are shown on the left, the power spectral densities (PSD) on the right (Welch method applied to 3 s of data, sub-epochs of 0.5 s, mean value removed from each of them, 50% of overlap). A) Simulated signal (50% of maximal voluntary contraction, MVC) with random MU firings. B) Simulated signal (50% MVC) with a level of synchronization equal to 10%. C) Experimental data from vastus medialis at 40% MVC (data decomposed by the algorithm of Holobar and Zazula, IEEE Trans. Sig. Proc. 2007; PSD of the cumulated firings almost identical to that of CWF, as few MUs were identified).
Keyphrases