Login / Signup

Responses of activity rhythms to temperature cues evolve in Drosophila populations selected for divergent timing of eclosion.

Lakshman AbhilashArshad KalliyilVijay Kumar Sharma
Published in: The Journal of experimental biology (2020)
Even though the rhythms in adult emergence and locomotor activity are two different phenomena that occur at distinct life stages of the fly life cycle, previous studies have hinted at similarities in certain aspects of the organisation of the circadian clock driving these two rhythms. For instance, the period gene plays an important regulatory role in both rhythms. In an earlier study, we have shown that selection on timing of adult emergence behaviour in populations of Drosophila melanogaster leads to the co-evolution of temperature sensitivity of circadian clocks driving eclosion. In this study, we investigated whether temperature sensitivity of the locomotor activity rhythm evolved in our populations separately from the adult emergence rhythm, with the goal of understanding the extent of similarity (or lack thereof) in circadian organisation underlying the two rhythms. We found that in response to simulated jetlag with temperature cycles, late chronotypes (populations selected for predominant emergence during dusk) indeed re-entrained faster than early chronotypes (populations selected for predominant emergence during dawn) to 6 h phase delays, thereby indicating enhanced sensitivity of the activity/rest clock to temperature cues in these stocks (entrainment is the synchronisation of internal rhythms to cyclic environmental time cues). Additionally, we found that late chronotypes show higher plasticity of phases across regimes, day-to-day stability in phases and amplitude of entrainment, all indicative of enhanced temperature-sensitive activity/rest rhythms. Our results highlight remarkably similar organisation principles between circadian clocks regulating emergence and activity/rest rhythms.
Keyphrases
  • drosophila melanogaster
  • spinal cord injury
  • atrial fibrillation
  • blood pressure
  • transcription factor
  • young adults
  • genome wide
  • copy number