Login / Signup

Functional Tailoring of Multi-Dimensional Pure MXene Nanostructures for Significantly Accelerated Electromagnetic Wave Absorption.

Xiaojun ZengChao ZhaoXiao JiangRonghai YuRenchao Che
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Transition metal carbide (Ti 3 C 2 T x MXene), with a large specific surface area and abundant surface functional groups, is a promising candidate in the family of electromagnetic wave (EMW) absorption. However, the high conductivity of MXene limits its EMW absorption ability, so it remains a challenge to obtain outstanding EMW attenuation ability in pure MXene. Herein, by integrating HF etching, KOH shearing, and high-temperature molten salt strategies, layered MXene (L-MXene), network-like MXene nanoribbons (N-MXene NRs), porous MXene monolayer (P-MXene ML), and porous MXene layer (P-MXene L) are rationally constructed with favorable microstructures and surface states for EMW absorption. HF, KOH, and KCl/LiCl are used to functionalize MXene to tune its microstructure and surface state (F - , OH - , and Cl - terminals), thereby improving the EMW absorption capacity of MXene-based nanostructures. Impressively, with the unique structure, proper electrical conductivity, large specific surface area, and abundant porous defects, MXene-based nanostructures achieve good impedance matching, dipole polarization, and conduction loss, thus inheriting excellent EMW absorption performance. Consequently, L-MXene, N-MXene NRs, P-MXene ML, and P-MXene L enable a reflection loss (R L ) value of -43.14, -63.01, -60.45, and -56.50 dB with a matching thickness of 0.95, 1.51, 3.83, and 4.65 mm, respectively.
Keyphrases
  • heart failure
  • magnetic resonance imaging
  • optical coherence tomography
  • high temperature
  • transition metal