Login / Signup

A cosmic stream of atomic carbon gas connected to a massive radio galaxy at redshift 3.8.

Bjorn H C EmontsMatthew D LehnertIlsang YoonNir MandelkerMontserrat Villar-MartínGeorge K MileyCarlos De BreuckMiguel A Pérez-TorresNina A HatchPierre Guillard
Published in: Science (New York, N.Y.) (2023)
The growth of galaxies in the early Universe is driven by accretion of circum- and intergalactic gas. Simulations have predicted that steady streams of cold gas penetrate the dark matter halos of galaxies and provide the raw material necessary to sustain star formation. We report a filamentary stream of gas that extends for 100 kiloparsecs and connects to the massive radio galaxy 4C 41.17. We detected the stream using submillimeter observations of the 3 P 1 to 3 P 0 emission from the [C i] line of atomic carbon, a tracer of neutral atomic or molecular hydrogen gas. The galaxy contains a central gas reservoir that is fueling a vigorous starburst. Our results show that the raw material for star formation can be present in cosmic streams outside galaxies.
Keyphrases
  • room temperature
  • carbon dioxide
  • molecular dynamics
  • positron emission tomography