Login / Signup

Contributions of metabolic and temporal costs to human gait selection.

Erik M SummersideRodger KramAlaa A Ahmed
Published in: Journal of the Royal Society, Interface (2019)
Humans naturally select several parameters within a gait that correspond with minimizing metabolic cost. Much less is understood about the role of metabolic cost in selecting between gaits. Here, we asked participants to decide between walking or running out and back to different gait specific markers. The distance of the walking marker was adjusted after each decision to identify relative distances where individuals switched gait preferences. We found that neither minimizing solely metabolic energy nor minimizing solely movement time could predict how the group decided between gaits. Of our twenty participants, six behaved in a way that tended towards minimizing metabolic energy, while eight favoured strategies that tended more towards minimizing movement time. The remaining six participants could not be explained by minimizing a single cost. We provide evidence that humans consider not just a single movement cost, but instead a weighted combination of these conflicting costs with their relative contributions varying across participants. Individuals who placed a higher relative value on time ran faster than individuals who placed a higher relative value on metabolic energy. Sensitivity to temporal costs also explained variability in an individual's preferred velocity as a function of increasing running distance. Interestingly, these differences in velocity both within and across participants were absent in walking, possibly due to a steeper metabolic cost of transport curve. We conclude that metabolic cost plays an essential, but not exclusive role in gait decisions.
Keyphrases
  • cerebral palsy
  • magnetic resonance imaging
  • magnetic resonance
  • lower limb