Login / Signup

Tumor purity adjusted beta values improve biological interpretability of high-dimensional DNA methylation data.

Johan StaafMattias Aine
Published in: PloS one (2022)
A common issue affecting DNA methylation analysis in tumor tissue is the presence of a substantial amount of non-tumor methylation signal derived from the surrounding microenvironment. Although approaches for quantifying and correcting for the infiltration component have been proposed previously, we believe these have not fully addressed the issue in a comprehensive and universally applicable way. We present a multi-population framework for adjusting DNA methylation beta values on the Illumina 450/850K platform using generic purity estimates to account for non-tumor signal. Our approach also provides an indirect estimate of the aggregate methylation state of the surrounding normal tissue. Using whole exome sequencing derived purity estimates and Illumina 450K methylation array data generated by The Cancer Genome Atlas project (TCGA), we provide a demonstration of this framework in breast cancer illustrating the effect of beta correction on the aggregate methylation beta value distribution, clustering accuracy, and global methylation profiles.
Keyphrases
  • dna methylation
  • genome wide
  • gene expression
  • copy number
  • stem cells
  • high throughput
  • squamous cell carcinoma
  • quality improvement
  • papillary thyroid
  • young adults
  • lymph node metastasis
  • breast cancer risk