Neural network diabatization: A new ansatz for accurate high-dimensional coupled potential energy surfaces.
David M G WilliamsWolfgang EisfeldPublished in: The Journal of chemical physics (2018)
A new diabatization method based on artificial neural networks (ANNs) is presented, which is capable of reproducing high-quality ab initio data with excellent accuracy for use in quantum dynamics studies. The diabatic potential matrix is expanded in terms of a set of basic coupling matrices and the expansion coefficients are made geometry-dependent by the output neurons of the ANN. The ANN is trained with respect to ab initio data using a modified Marquardt-Levenberg back-propagation algorithm. Due to its setup, this approach combines the stability and straightforwardness of a standard low-order vibronic coupling model with the accuracy by the ANN, making it particularly advantageous for problems with a complicated electronic structure. This approach combines the stability and straightforwardness of a standard low-order vibronic coupling model with the accuracy by the ANN, making it particularly advantageous for problems with a complicated electronic structure. This novel ANN diabatization approach has been applied to the low-lying electronic states of NO3 as a prototypical and notoriously difficult Jahn-Teller system in which the accurate description of the very strong non-adiabatic coupling is of paramount importance. Thorough tests show that an ANN with a single hidden layer is sufficient to achieve excellent results and the use of a "deeper" layering shows no clear benefit. The newly developed diabatic ANN potential energy surface (PES) model accurately reproduces a set of more than 90 000 Multi-configuration Reference Singles and Doubles Configuration Interaction (MR-SDCI) energies for the five lowest PES sheets.
Keyphrases
- neural network
- room temperature
- mental health
- high resolution
- big data
- human health
- escherichia coli
- spinal cord
- machine learning
- staphylococcus aureus
- deep learning
- risk assessment
- molecular dynamics
- artificial intelligence
- biofilm formation
- climate change
- candida albicans
- pseudomonas aeruginosa
- resistance training
- high intensity
- contrast enhanced