Login / Signup

Situation-Aware IoT Data Generation towards Performance Evaluation of IoT Middleware Platforms.

Shalmoly MondalPrem Prakash JayaramanPari Delir HaghighiAlireza HassaniDimitrios Georgakopoulos
Published in: Sensors (Basel, Switzerland) (2022)
With the increasing growth of IoT applications in various sectors (e.g., manufacturing, healthcare, etc.), we are witnessing a rising demand of IoT middleware platform that host such IoT applications. Hence, there arises a need for new methods to assess the performance of IoT middleware platforms hosting IoT applications. While there are well established methods for performance analysis and testing of databases, and some for the Big data domain, such methods are still lacking support for IoT due to the complexity, heterogeneity of IoT application and their data. To overcome these limitations, in this paper, we present a novel situation-aware IoT data generation framework, namely, SA-IoTDG. Given a majority of IoT applications are event or situation driven, we leverage a situation-based approach in SA-IoTDG for generating situation-specific data relevant to the requirements of the IoT applications. SA-IoTDG includes a situation description system, a SySML model to capture IoT application requirements and a novel Markov chain-based approach that supports transition of IoT data generation based on the corresponding situations. The proposed framework will be beneficial for both researchers and IoT application developers to generate IoT data for their application and enable them to perform initial testing before the actual deployment. We demonstrate the proposed framework using a real-world example from IoT traffic monitoring. We conduct experimental evaluations to validate the ability of SA-IoTDG to generate IoT data similar to real-world data as well as enable conducting performance evaluations of IoT applications deployed on different IoT middleware platforms using the generated data. Experimental results present some promising outcomes that validate the efficacy of SA-IoTDG. Learning and lessons learnt from the results of experiments conclude the paper.
Keyphrases
  • big data
  • electronic health record
  • healthcare
  • machine learning
  • artificial intelligence
  • type diabetes
  • metabolic syndrome
  • high throughput
  • health insurance