Login / Signup

Self-assembly Processes in Hydrated Montmorillonite by FTIR Investigations.

Maria Teresa CaccamoGiuseppe MaviliaLetterio MaviliaDomenico LombardoSalvatore Magazù
Published in: Materials (Basel, Switzerland) (2020)
Experimental findings obtained by FTIR and Raman spectroscopies on montmorillonite-water mixtures at three concentration values are presented. To get some insight into the hydrogen bond network of water within the montmorillonite network, FTIR and Raman spectra have been collected as a function of time and then analyzed following two complementary approaches: An analysis of the intramolecular OH stretching mode in the spectral range of 2700-3900 cm-1 in terms of two Gaussian components, and an analysis of the same OH stretching mode by wavelet cross-correlation. The FTIR and Raman investigations have been carried as a function of time for a montmorillonite-water weight composition (wt%) of 20%-80%, 25%-75%, and 35%-65%, until the dehydrated state where the samples appear as a homogeneous rigid layer of clay. In particular, for both the FTIR and Raman spectra, the decomposition of the OH stretching band into a "closed" and an "open" contribution and the spectral wavelet analysis allow us to extract quantitative information on the time behavior of the system water content. It emerges that, the total water contribution inside the montmorillonite structure decreases as a function of time. However, the relative weight of the ordered water contribution diminishes more rapidly while the relative weight of the disordered water contribution increases, indicating that a residual water content, characterized by a highly structural disorder, rests entrapped in the montmorillonite layer structure for a longer time. From the present study, it can be inferred that the montmorillonite dehydration process promotes the layer self-assembly.
Keyphrases
  • body mass index
  • physical activity
  • weight loss
  • computed tomography
  • optical coherence tomography
  • magnetic resonance
  • label free
  • health information
  • quantum dots