The Biomodified Lignin Platform: A Review.
Filippo FabbriSabrina BischofSebastian A MayrSebastian GritschMiguel Jimenez BartolomeNikolaus SchwaigerGeorg M GübitzRenate WeissPublished in: Polymers (2023)
A reliance on fossil fuel has led to the increased emission of greenhouse gases (GHGs). The excessive consumption of raw materials today makes the search for sustainable resources more pressing than ever. Technical lignins are mainly used in low-value applications such as heat and electricity generation. Green enzyme-based modifications of technical lignin have generated a number of functional lignin-based polymers, fillers, coatings, and many other applications and materials. These bio-modified technical lignins often display similar properties in terms of their durability and elasticity as fossil-based materials while also being biodegradable. Therefore, it is possible to replace a wide range of environmentally damaging materials with lignin-based ones. By researching publications from the last 20 years focusing on the latest findings utilizing databases, a comprehensive collection on this topic was crafted. This review summarizes the recent progress made in enzymatically modifying technical lignins utilizing laccases, peroxidases, and lipases. The underlying enzymatic reaction mechanisms and processes are being elucidated and the application possibilities discussed. In addition, the environmental assessment of novel technical lignin-based products as well as the developments, opportunities, and challenges are highlighted.