Double-Reinforced Fish Gelatin Composite Scaffolds for Osteochondral Substitutes.
Alin Georgian ToaderGeorge Mihail VlasceanuAndrada SerafimAdela BanciuMariana IonitaPublished in: Materials (Basel, Switzerland) (2023)
Genipin crosslinked composite blends of fish gelatin/kappa-carrageenan (fG/κC) with different concentrations of graphene oxide (GO) for osteochondral substitutes were prepared by a simple solution-blending method. The resulting structures were examined by micro-computer tomography, swelling studies, enzymatic degradations, compressions tests, MTT, LDH, and LIVE/DEAD assays. The derived findings revealed that genipin crosslinked fG/κC blends reinforced with GO have a homogenous morphology with ideal pore dimensions of 200-500 µm for bones alternative. GO additivation with a concentration above 1.25% increased the blends' fluid absorption. The full degradation of the blends occurs in 10 days and the gel fraction stability increases with GO concentration. The blend compression modules decrease at first until fG/κC GO3, which has the least elastic behavior, then by raising the GO concentration the blends start to regain elasticity. The MC3T3-E1 cell viability reveals less viable cells with the increase of GO concentration. The LDH together with the LIVE/DEAD assays reports a high concentration of live and healthy cells in all types of composite blends and very few dead cells at the higher GO content.