Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions.
Francesco Della MonicaAntonio BuonerbaAlfonso GrassiCarmine CapacchioneStefano MilionePublished in: ChemSusChem (2016)
Glycidol is converted into glycerol carbonate (GC) by coupling with CO2 in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2 =1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other epoxides, such as propylene oxide, under the same reaction conditions is clearly related to the presence of a hydroxyl functionality on the oxirane ring. Density functional theory calculations (DFT) supported by 1 H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds into a dimeric structure, activating this molecule to nucleophilic attack, and allowing the formation of GC. Furthermore, the glycidol/TBAB catalytic system acts as an efficient organocatalyst for the cycloaddition of CO2 to various oxiranes.