Login / Signup

Hydrogenation of Alkenes via Cooperative Hydrogen Atom Transfer.

Padmanabha V KattamuriJulian G West
Published in: Journal of the American Chemical Society (2020)
Radical hydrogenation via hydrogen atom transfer (HAT) to alkenes is an increasingly important transformation for the formation of thermodynamic alkane isomers. Current single-catalyst methods require stoichiometric oxidant in addition to hydride (H-) source to function. Here we report a new approach to radical hydrogenation: cooperative hydrogen atom transfer (cHAT), where each hydrogen atom donated to the alkene arrives from a different catalyst. Further, these hydrogen atom (H•) equivalents are generated from complementary hydrogen atom precursors, with each alkane requiring one hydride (H-) and one proton (H+) equivalent and no added oxidants. Preliminary mechanistic study supports this reaction manifold and shows the intersection of metal-catalyzed HAT and thiol radical trapping HAT catalytic cycles to be essential for effective catalysis. Together, this unique catalyst system allows us to reduce a variety of unactivated alkene substrates to their respective alkanes in high yields and diastereoselectivities and introduces a new approach to radical hydrogenation.
Keyphrases
  • electron transfer
  • visible light
  • molecular dynamics
  • room temperature
  • ionic liquid
  • highly efficient
  • reduced graphene oxide
  • carbon dioxide