Login / Signup

IR-Laser Ablation of Potassium Cyanide: A Surprisingly Simple Route to Polynitrogen and Polycarbon Species.

Frenio A RedekerHelmut BeckersSebastian Riedel
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Pulsed laser irradiation of solid potassium cyanide (KCN) produces, besides free nitrogen and carbon atoms, the molecular species KN and KC which are potential candidates for interstellar species of potassium. Additionally, N3 , N3 - , KN3 , C3 , C3 - , and KC3 are produced and isolated in solid noble gases as well as in solid N2 . Molecular potassium nitrene (KN) reacts with dinitrogen in neon and argon matrices after photochemical excitation (λ=470 nm) forming molecular end-on (C∞v ) and side-on (C2v ) potassium azide isomers. The side-on isomer (C2v ) is thermodynamically favored at the CCSD(T)/ma-def2-TZVP level of theory. It can be obtained from the end-on isomer by UV-irradiation (λ=273 nm).
Keyphrases
  • photodynamic therapy
  • fluorescent probe
  • high speed
  • genetic diversity
  • risk assessment
  • high resolution
  • radiation therapy
  • human health
  • mass spectrometry
  • radiofrequency ablation
  • amino acid
  • energy transfer