Login / Signup

Proof of Concept Studies Directed Towards Designed Molecular Wires: Property-Driven Synthesis of Air and Moisture-Stable Polystannanes.

Jeffrey PauAlan J LoughR Stephen WylieRobert A GossageDaniel A Foucher
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
Polystannanes with azobenzene moieties designed to protect the Sn-Sn backbone from light- and moisture-induced degradation are described. The azo-stannyl precursor 3 (70 %) is converted in good yields (88-91 %) to the mono- (4), and dichlorostannanes (5), by sequential chlorination, followed by further reduction of 5 to the dihydride (6) using NaBH4 (78 %). All stannanes were characterised by NMR (1 H, 13 C, 119 Sn) spectroscopy and HRMS; in addition, 3, 4 and 5 were structurally elucidated using X-ray diffraction analysis. Metal-free dehydrocoupling of 6 at RT leads exclusively to homopolymer (7-i) displaying an initial solution 119 Sn NMR signal (δ=-196 ppm) that migrates to -235 ppm after 10 days (7-f). In contrast, metal-catalyzed dehydrocoupling of 6 in toluene at RT leads directly 7-f. Random co-polymers formed from 6 and (nBu)2 SnH2 at 4:1 (8 a) and 1:1 (8 b) ratios were compared to the alternating polystannane (9) prepared by the reaction of 6 with (nBu)2 Sn(NEt2 )2 . DFT calculations of 3-6 indicate that hypercoordination at Sn is influenced by substituents and by solvation. Homopolymer 7 was found to have unprecedented moisture and light stability in the solid state for >6 months.
Keyphrases
  • solid state
  • high resolution
  • magnetic resonance
  • density functional theory
  • molecular dynamics
  • molecular dynamics simulations
  • ionic liquid
  • diabetic rats
  • oxidative stress