Polymer Physics Behind the Gel-spinning of UHMWPE Fibers.
Zefan WangLeire SangronizJian XuCaizhen ZhuAlejandro J MüllerPublished in: Macromolecular rapid communications (2024)
Gel-spinning of ultra-high molecular weight polyethylene (UHMWPE) fibers has attracted great interest in academia and industry since its birth and commercialization in the 1980s, due to unique properties such as high modulus, low density, and excellent chemical resistance. However, the high viscosity and long relaxation time greatly complicate processing. In industry, solvents like decalin, paraffin oil, etc., usually disentangle the physical networks and promote final drawability. From extruding the polymer solution to post-solid-stretching, many polymer physics problems that accompany high-modulus fiber gel-spinning should be understood and addressed. In this review, by detailed discussions about the effect of entanglements and intracrystalline chain dynamics on the mechanical properties of UHMWPE, we provide theoretical descriptions of the structure formation of disentangled UHMWPE crystals and the origin of high modulus and strength of final fibers. Several physical intrinsic key factors are also discussed, revealing why UHMWPE is an ideal material for producing high-performance fibers. This article is protected by copyright. All rights reserved.