Electrochemical and Optical Sensors for Real-Time Detection of Nitrate in Water.
Kartikay LalSwapna A JaywantKhalid Mahmood ArifPublished in: Sensors (Basel, Switzerland) (2023)
The health and integrity of our water sources are vital for the existence of all forms of life. However, with the growth in population and anthropogenic activities, the quality of water is being impacted globally, particularly due to a widespread problem of nitrate contamination that poses numerous health risks. To address this issue, investigations into various detection methods for the development of in situ real-time monitoring devices have attracted the attention of many researchers. Among the most prominent detection methods are chromatography, colorimetry, electrochemistry, and spectroscopy. While all these methods have their pros and cons, electrochemical and optical methods have emerged as robust and efficient techniques that offer cost-effective, accurate, sensitive, and reliable measurements. This review provides an overview of techniques that are ideal for field-deployable nitrate sensing applications, with an emphasis on electrochemical and optical detection methods. It discusses the underlying principles, recent advances, and various measurement techniques. Additionally, the review explores the current developments in real-time nitrate sensors and discusses the challenges of real-time implementation.