Login / Signup

Transitions in density, pressure, and effective temperature drive collective cell migration into confining environments.

Wan-Jung LinAmit Pathak
Published in: bioRxiv : the preprint server for biology (2023)
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate processes of development, tumor invasion, and wound healing. Naturally, traversal of cell collective through confining environments involves crowding due to the narrowing space, which seems tenuous given the conventional inverse relationship between cell density and migration. However, physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in contiguous microchannels, we show that epithelial (MCF10A) monolayers accumulate higher cell density before entering narrower channels; however, overexpression of breast cancer oncogene +ErbB2 reduced this need for density accumulation across confinement. While wildtype MCF10A cells migrated faster in narrow channels, this confinement sensitivity reduced after +ErbB2 mutation or with constitutively-active RhoA. The migrating collective developed pressure differentials upon encountering microchannels, like fluid flow into narrowing spaces, and this pressure dropped with their continued migration. These transitions of pressure and density altered cell shapes and increased effective temperature, estimated by treating cells as granular thermodynamic system. While +RhoA cells and those in confined regions were effectively warmer, cancer-like +ErbB2 cells remained cooler. Epithelial reinforcement by metformin treatment increased density and temperature differentials across confinement, indicating that higher cell cohesion could reduce unjamming. Our results provide experimental evidence for previously proposed theories of inverse relationship between density and motility-related effective temperature. Indeed, we show across cell lines that confinement increases pressure and effective temperature, which enable migration by reducing density. This physical interpretation of collective cell migration as granular matter could advance our understanding of complex living systems.
Keyphrases