Amidst the global pandemic and catastrophe created by 'COVID-19', every research institution and scientist are doing their best efforts to invent or find the vaccine or medicine for the disease. The objective of this research is to design and develop a deep learning-based multi-modal for the screening of COVID-19 using chest radiographs and genomic sequences. The modal is also effective in finding the degree of genomic similarity among the Severe Acute Respiratory Syndrome-Coronavirus 2 and other prevalent viruses such as Severe Acute Respiratory Syndrome-Coronavirus, Middle East Respiratory Syndrome-Coronavirus, Human Immunodeficiency Virus, and Human T-cell Leukaemia Virus. The experimental results on the datasets available at National Centre for Biotechnology Information, GitHub, and Kaggle repositories show that it is successful in detecting the genome of 'SARS-CoV-2' in the host genome with an accuracy of 99.27% and screening of chest radiographs into COVID-19, non-COVID pneumonia and healthy with a sensitivity of 95.47%. Thus, it may prove a useful tool for doctors to quickly classify the infected and non-infected genomes. It can also be useful in finding the most effective drug from the available drugs for the treatment of 'COVID-19'.
Keyphrases
- sars cov
- respiratory syndrome coronavirus
- coronavirus disease
- human immunodeficiency virus
- deep learning
- endothelial cells
- hepatitis c virus
- healthcare
- hiv infected
- quality improvement
- dna methylation
- genome wide
- convolutional neural network
- gene expression
- artificial intelligence
- extracorporeal membrane oxygenation
- induced pluripotent stem cells
- adverse drug
- mechanical ventilation
- label free