Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance.
Martin K DufficyRia D CorderKimberly A DennisPeter S FedkiwSaad A KhanPublished in: ACS applied materials & interfaces (2021)
Binding agents are a critical component of Si-based anodes for lithium-ion batteries. Herein, we introduce a composite hydrogel binder consisting of carbon black (CB) and guar, which is chemically cross-linked with glutaraldehyde as a means to reinforce the electrode structure during lithiation and improve electronic conductivity. Dynamic rheological measurements are used to monitor the cross-linking reaction and show that rheology plays a significant role in binder performance. The cross-linking reaction occurs at a faster rate and produces stronger networks in the presence of CB, as evidenced from higher gel elastic modulus in guar + CB gels than guar gels alone. Silicon nanoparticle (SiNP) electrodes that use binders with low cross-link densities (trxn < 2 days) demonstrate discharge capacities ∼1200 mAh g-1 and Coulombic efficiencies >99.8% after 300 cycles at 1-C rate. Low cross-link densities likely increase the capacity of SiNP anodes because of binder-Si hydrogen-bonding interactions that accommodate volume expansions. In addition, the cross-linked binder demonstrates the potential for self-healing, as evidenced by an increased elastic modulus after the gel was mechanically fragmented, which may preserve the electrode microstructure during lithiation and increase capacity retention. The composite hydrogel with integrated conductive additives gives promise to a new type of binder for next-generation lithium-ion batteries.