Login / Signup

Use of Postregistration Monitoring Data to Evaluate the Ecotoxicological Risks of Pesticides to Surface Waters: A Case Study with Chlorpyrifos in the Iberian Peninsula.

Andreu RicoRaquel DafouzMarco VighiJosé Luis Rodríguez-GilMichiel A Daam
Published in: Environmental toxicology and chemistry (2020)
Chemical monitoring data sets such as those provided by the implementation of the Water Framework Directive (WFD) offer opportunities to evaluate the ecological risks of pesticides under large spatiotemporal scales and to evaluate the protectiveness of the current prospective risk-assessment framework. As a case study, we used the monitoring data set for the insecticide chlorpyrifos to perform a probabilistic risk assessment for Iberian surface-water ecosystems. The specific objectives of the study were 1) to assess the occurrence of chlorpyrifos in relation to different agricultural production land uses, 2) to assess the spatiotemporal variation in the exceedance of the European WFD short- and long-term environmental quality standards (maximum allowable concentration environmental quality standard [MAC-EQS] and annual average [AA] EQS), and 3) to perform a probabilistic risk assessment for freshwater invertebrates. A database that contains chlorpyrifos concentrations from 14 600 surface water samples taken between 2012 and 2017 in the Iberian Peninsula (Spain and Portugal) was analyzed, and chlorpyrifos was detected in 21% of these samples. The MAC-EQS was exceeded in 2% of the cases, whereas the AA-EQS was exceeded in 18% of the cases. The majority of the exceedances took place in the littoral areas of the eastern and southeastern parts of the Iberian Peninsula, particularly in areas with dominant citrus production during late spring, late summer, and autumn. The present study indicates unacceptable risks posed by chlorpyrifos to Iberian surface waters over the study period, although it was approved for use in Europe. The present study supports the need to perform further postregistration monitoring assessments with other pesticides following similar approaches, which can help to identify possible pesticide-misuse practices and improvements of the prospective risk-assessment framework. Environ Toxicol Chem 2021;40:500-512. © 2020 SETAC.
Keyphrases
  • risk assessment
  • human health
  • heavy metals
  • climate change
  • primary care
  • healthcare
  • electronic health record
  • big data
  • south africa
  • artificial intelligence
  • zika virus
  • high resolution
  • water quality
  • aedes aegypti