Login / Signup

A dual PMMA/calcium sulfate carrier of vancomycin is more effective than PMMA-vancomycin at inhibiting Staphylococcus aureus growth in vitro.

Shanchao LuoTong-Meng JiangLina LongYingnian YangXiaoping YangLan LuoJinli LiZhiyu ChenChongqi ZouShixing Luo
Published in: FEBS open bio (2020)
Both antibiotic-impregnated poly(methyl acrylate, methyl methacrylate) (PMMA) and antibiotic-impregnated calcium sulfate have been successfully used as local antibiotic delivery vehicles for the management of chronic osteomyelitis. Here, we examined the antibiotic elution characteristics and antibacterial properties of a composite drug delivery system consisting of PMMA/calcium sulfate carrying vancomycin (dual carrier-v) against Staphylococcus aureus, with PMMA loaded with vancomycin (PMMA-v) as a control. Vancomycin gradually degraded from dual carrier-v and PMMA-v up to about 8 and 6 weeks, respectively. At different elution time points, the inhibition zones of the dual carrier-v were larger than the inhibition zones of the PMMA-v (P < 0.05). The colony inhibition rate of the dual carrier-v was 95.57%, whereas it was 77.87% for PMMA-v. Scanning electron microscopy was used to demonstrate biofilm formation on the surface of plates treated with vancomycin-unloaded PMMA, whereas there was no biofilm formation on the surface of plates treated with dual carrier-v or PMMA-v. The dual carrier-v was more effective at antibacterial adhesion at each time point after immersion in simulated body fluid as compared with PMMA-v (P < 0.05). In conclusion, our results suggest that the dual carrier-v can release higher concentrations of antibiotics and inhibit bacteria growth more effectively in vitro as compared with PMMA-v. The dual carrier-v thus may have potential as an alternative strategy for osteomyelitis management.
Keyphrases