Login / Signup

Validation of Matrix Metalloproteinase-9 (MMP-9) as a Novel Target for Treatment of Diabetic Foot Ulcers in Humans and Discovery of a Potent and Selective Small-Molecule MMP-9 Inhibitor That Accelerates Healing.

Trung T NguyenDerong DingWilliam R WolterRocio L PérezMatthew M ChampionKiran V MahasenanDusan HesekMijoon LeeValerie A SchroederJeffrey I JonesElena LastochkinMargaret K RoseCharles E PetersonMark A SuckowShahriar MobasheryMayland Chang
Published in: Journal of medicinal chemistry (2018)
Diabetic foot ulcers (DFUs) are a significant health problem. A single existing FDA-approved drug for this ailment, becaplermin, is not standard-of-care. We previously demonstrated that upregulation of active matrix metalloproteinase (MMP)-9 is the reason that the diabetic wound in mice is recalcitrant to healing and that MMP-8 participates in wound repair. In the present study, we validate the target MMP-9 by identifying and quantifying active MMP-8 and MMP-9 in human diabetic wounds using an affinity resin that binds exclusively to the active forms of MMPs coupled with proteomics. Furthermore, we synthesize and evaluate enantiomerically pure ( R)- and ( S)-ND-336, as inhibitors of the detrimental MMP-9, and show that the ( R)-enantiomer has superior efficacy in wound healing over becaplermin. Our results reveal that the mechanisms of pathology and repair are similar in diabetic mice and diabetic humans and that ( R)-ND-336 holds promise for the treatment of DFUs as a first-in-class therapeutic.
Keyphrases