Login / Signup

Higher-Order Structure Influences the Kinetics of Diethylpyrocarbonate Covalent Labeling of Proteins.

Xiao PanPatanachai K LimpikiratiHuan ChenTianying LiuRichard W Vachet
Published in: Journal of the American Society for Mass Spectrometry (2020)
The combination of covalent labeling (CL) and mass spectrometry (MS) has emerged as a useful tool for studying protein structure due to its good structural coverage, the ability to study proteins in mixtures, and its high sensitivity. Diethylpyrocarbonate (DEPC) is an effective CL reagent that can label N-termini and the side chains of several nucleophilic residues, providing information for about 30% of the residues in the average protein. For DEPC to provide accurate structural information, the extent of labeling must be controlled to minimize label-induced structural perturbations. In this work, we establish a quantitative correlation between general protein structural factors and DEPC reaction rates by measuring the reaction rate coefficients for several model proteins. Using principal component and regression analyses, we find that the solvent accessible surface areas of histidine and lysine residues in proteins are the primary factors that determine a protein's reactivity toward DEPC, despite the fact that other more abundant residues, such as tyrosine, threonine, and serine, are also labeled by DEPC. From the statistical analysis, a model emerges that can be used to predict the reactivity of a protein based on its structure and sequence, allowing the optimal DEPC concentration to be chosen for a given protein. The resulting model is supported by cross-validation studies and by accurately predicting of the reactivity of five test proteins. Overall, our model reveals interesting insight into the reactivity of proteins with DEPC, and it will facilitate identification of optimal DEPC labeling conditions for proteins.
Keyphrases