Login / Signup

Microsecond Protein Dynamics from Combined Bloch-McConnell and Near-Rotary-Resonance R1p Relaxation-Dispersion MAS NMR.

Dominique MarionDiego F GautoIsabel AyalaKarine Giandoreggio-BarrancoPaul Schanda
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2018)
Studying protein dynamics on microsecond-to-millisecond (μs-ms) time scales can provide important insight into protein function. In magic-angle-spinning (MAS) NMR, μs dynamics can be visualized by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>R</mml:mi> <mml:mrow><mml:mn>1</mml:mn> <mml:mi>ρ</mml:mi></mml:mrow> </mml:msub> </mml:math> rotating-frame relaxation dispersion experiments in different regimes of radio-frequency field strengths: at low RF field strength, isotropic-chemical-shift fluctuation leads to "Bloch-McConnell-type" relaxation dispersion, while when the RF field approaches rotary resonance conditions bond angle fluctuations manifest as increased <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>R</mml:mi> <mml:mrow><mml:mn>1</mml:mn> <mml:mi>ρ</mml:mi></mml:mrow> </mml:msub> </mml:math> rate constants ("Near-Rotary-Resonance Relaxation Dispersion", NERRD). Here we explore the joint analysis of both regimes to gain comprehensive insight into motion in terms of geometric amplitudes, chemical-shift changes, populations and exchange kinetics. We use a numerical simulation procedure to illustrate these effects and the potential of extracting exchange parameters, and apply the methodology to the study of a previously described conformational exchange process in microcrystalline ubiquitin.
Keyphrases
  • high resolution
  • magnetic resonance
  • mass spectrometry
  • ms ms
  • small molecule
  • energy transfer
  • protein protein
  • transition metal
  • ionic liquid