Login / Signup

Tipping points emerge from weak mutualism in metacommunities.

Jonas DenkOskar Hallatschek
Published in: PLoS computational biology (2024)
The coexistence of obligate mutualists is often precariously close to tipping points where small environmental changes can drive catastrophic shifts in species composition. For example, microbial ecosystems can collapse by the decline of a strain that provides an essential resource on which other strains cross-feed. Here, we show that tipping points, ecosystem collapse, bistability and hysteresis arise even with very weak (non-obligate) mutualism provided the population is spatially structured. Based on numeric solutions of a metacommunity model and mean-field analyses, we demonstrate that weak mutualism lowers the minimal dispersal rate necessary to avoid stochastic extinction, while species need to overcome a mean threshold density to survive in this low dispersal rate regime. Our results allow us to make numerous predictions for mutualistic metacommunities regarding tipping points, hysteresis effects, and recovery from external perturbations, and let us draw general conclusions for ecosystems even with random, not necessarily mutualistic, interactions and systems with density-dependent dispersal rather than direct mutualistic interactions.
Keyphrases
  • climate change
  • escherichia coli
  • human health
  • microbial community
  • risk assessment
  • neural network