Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging.
Bidur PaudelSi-Yeon JeongCarolina Pena MartinezAlexis RickmanAshley Haluck-KangasElizabeth Thomas BartomKristina FredriksenAmira AffanehJohn A KesslerJoseph R MazzulliAndrea E MurmannEmily RogalskiChangiz GeulaAdriana FerreiraBradlee L HeckmannDouglas R GreenKatherine R SadleirRobert VassarMarcus E PeterPublished in: Nature communications (2024)
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Keyphrases
- cell death
- cell cycle arrest
- genome wide
- high glucose
- diabetic rats
- induced apoptosis
- oxidative stress
- end stage renal disease
- drug induced
- multiple sclerosis
- endothelial cells
- chronic kidney disease
- newly diagnosed
- genome wide identification
- resting state
- white matter
- magnetic resonance
- peritoneal dialysis
- working memory
- dna methylation
- spinal cord injury
- cerebral ischemia
- free survival
- blood brain barrier