High-Temperature Phase Transition Containing Switchable Dielectric Behavior, Long Fluorescence Lifetime, and Distinct Photoluminescence Changes in a 2D Hybrid CuBr4 Perovskite.
Ding-Chong HanYu-Hui TanWei-Chao WuYu-Kong LiYun-Zhi TangJia-Chang ZhuangTing-Ting YingHao ZhangPublished in: Inorganic chemistry (2021)
A novel organic-inorganic hybrid perovskite crystal, [ClC6H4(CH2)2NH3]2CuBr4 (1), having experienced an invertible high-temperature phase transition near Tc (the Curie temperature Tc = 355 K), has been successfully synthesized. The phase-transition characteristics for compound 1 are thoroughly revealed by specific heat capacity (Cp), differential thermal analysis, and differential scanning calorimetry tests, possessing 16 K broad thermal hysteresis. Multiple-temperature powder X-ray diffraction analysis further proves the phase-transition behavior of compound 1. Moreover, compound 1 exhibits a significant steplike dielectric response near Tc, revealing that it can be deemed to be a promising dielectric switching material. The variable-temperature fluorescence experiments show distinct photoluminescence (PL) changes of compound 1. Further investigation and calculation disclose that the fluorescence lifetime of compound 1 can reach as long as 55.46 μs, indicating that it can be a potential PL material. All of these researches contribute a substitutable avenue in the design and construction of neoteric phase-transition compounds combining high Curie temperature and PL properties.