Login / Signup

pH-Dependent Partitioning of Ionizable Organic Chemicals between the Silicone Polymer Polydimethylsiloxane (PDMS) and Water.

Lili NiuLuise HennebergerJulia HuchthausenMartin KraussAudrey OgefereBeate I Escher
Published in: ACS environmental Au (2022)
The silicone polymer polydimethysiloxane (PDMS) is a popular passive sampler for in situ and ex situ sampling of hydrophobic organic chemicals. Despite its limited sorptive capacity for polar and ionizable organic chemicals (IOC), IOCs have been found in PDMS when extracting sediment and suspended particulate matter. The pH-dependent partitioning of 190 organics and IOCs covering a range of octanol-water partition constants log  K ow from -0.3 to 7.7 was evaluated with a 10-day shaking method using mixtures composed of all chemicals at varying ratios of mass of PDMS to volume of water. This method reproduced the PDMS-water partition constant K PDMS/w of neutral chemicals from the literature and extended the dataset by 93 neutral chemicals. The existing quantitative structure-activity relationship between the log  K ow and K PDMS/w could be extended with the measured K PDMS/w linearly to a log  K ow of -0.3. Fully charged organics were not taken up into PDMS. Thirty-eight monoprotic organic acids and 42 bases showed negligible uptake of the charged species, and the pH dependence of the apparent D PDMS/w (pH) could be explained by the fraction of neutral species multiplied by the K PDMS/w of the neutral species of these IOCs. Seventeen multiprotic chemicals with up to three acidity constants p K a also showed a pH dependence of D PDMS/w (pH) with the tendency that the neutral and zwitterionic forms showed the highest D PDMS/w (pH). D PDMS/w (pH) of charged species of more hydrophobic multiprotic chemicals such as tetrabromobisphenol A and telmisartan was smaller but not negligible. Since these chemicals show high bioactivity, their contribution to mixture effects has to be considered when testing passive sampling extracts with in vitro bioassays. This work has further implications for understanding the role of microplastic as a vector for organic micropollutants.
Keyphrases
  • particulate matter
  • systematic review
  • ionic liquid
  • mass spectrometry
  • heavy metals
  • magnetic resonance
  • ms ms
  • magnetic resonance imaging